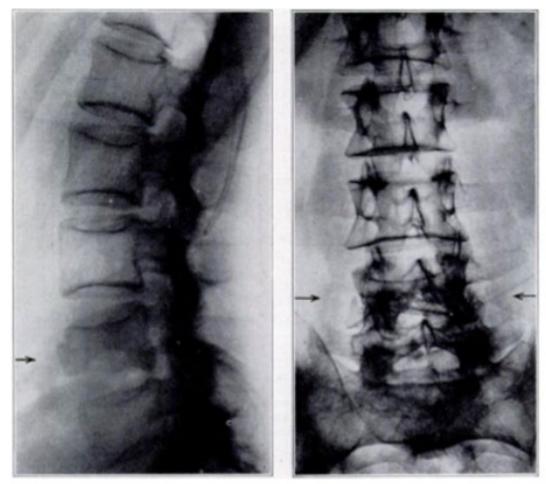
Thoracolumbar Trauma Diagnosis and Treatment

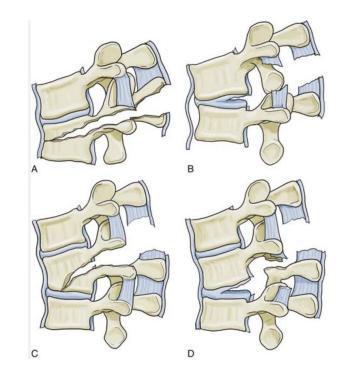
Cristian Gragnaniello MD, PhD

- Thieme: Royalties
- Springer/Nature: Royalties
- Medscape: Royalties

Overview

- 1. When and Where
- 2. Classifications
- 3. Radiological evaluation
- 4. Clinical evaluation
- 5. Medications, BP and DVT management
- 6. Treatment Goals
- 7. Non operative
- 8. Timing of surgery
- 9. Operative
- 10. Cases




FIG. 2-A FIG. 2-B Spontaneous fracture of the spine in senile osteoporosis.

Prevalence

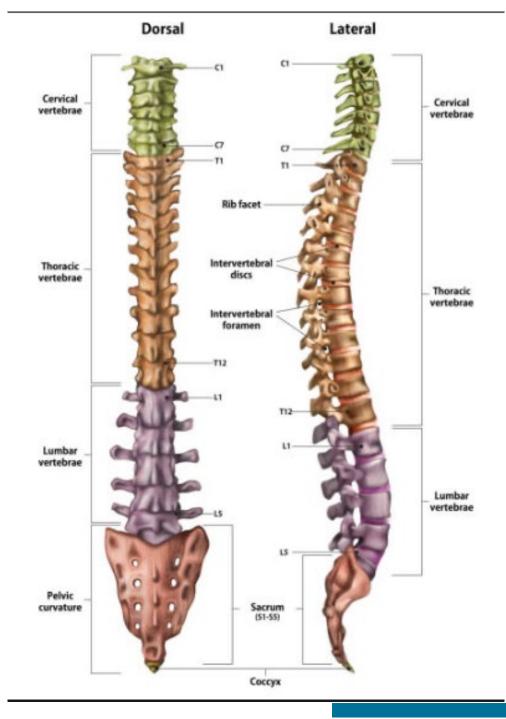
• Rigid T1-T10 + junctional T10-L2 + flexible L3-L5

- 7% of all blunt trauma
- 50-90% of yearly 200,000 spinal fractures in the US
- 25% have SCI
- A great number has other visceral and bony injuries

Thoracolumbar Spine - Basics

Three biomechanical regions

T1-T8:

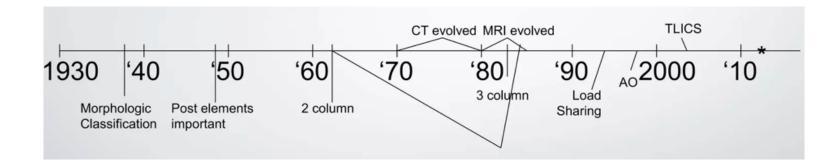

- relatively rigid (ribcage)
- kyphosis
- flexion injury pattern predominates

T9-L2:

- transition: immobile mobile
- transition: kyphosis lordosis
- most injuries occur here

L3-sacrum:

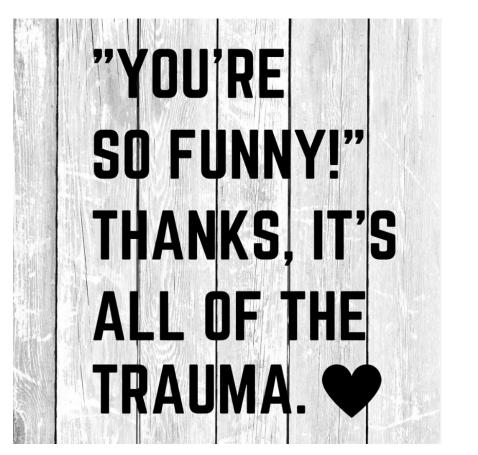
- mobile, lordosis
- axial load Injuries predominate



Role of classifications

Improve communication amongst physicians
 Assist in decision making
 Expected outcomes

- > 1938 Sir Watson Jones
- Chance 1948
- ➤ 1949 Nicoll
- 1963 Holdsworth
- 1971 Bedbrook
- ➤ 1983 Denis
- ➢ 1983 McAfee
- 1984 Ferguson & Allen
- 1994 McCormack & Gaines
- > 1994 Magerl & AO Spine
- ➢ 2005 TLICS
- 2013 AO Spine Trauma Knowledge Forum



The perfect classification...

- Validity
- Reliability (intra- and inter observer)
- Accurate
- No Ambiguity
- Easy to use
- Morphology vs biomechanical injury Mechanism
- Neurological compromise

Hiperflexion and compression strains (Watson-Jones, 1938)[23]

Vertical-compression = Burst fracture (stable) (Holdsworth, 1963, 1970)^[7,8] Burst fracture = neurological instability (Denis, 1983)^[2] Unstable burst fracture (PLC injury) (McAfee *et al.*, 1983)^[13]

Seven types of forces -(Ferguson et al., 1984)^[3]

- 1. compressive flexion
- 2. distractive flexion
- 3. lateral flexion
- 4. Translational
- 5. torsional flexion
- 6. vertical compression
- distractive extension injuries

Anterior column failure and load sharing score (McCormack et al., 1994)^[14]

Three-column concept (Denis, 1983)^[2] Two-column concept (Kelly and Whitesides, 1968)^[10] Neural arch horizontal spliting through bone (Chance, 1948)[1]

Seat-belt injuries; fulcrum anterior to the spine; tension stress and PLC disruption (Smith and Kaufer, 1969)^[18]

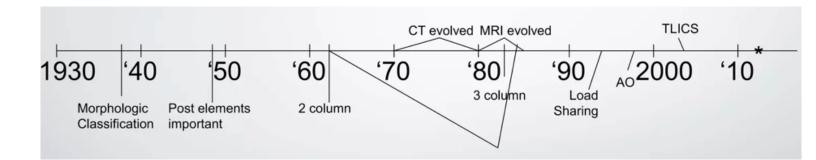
Distraction injuries through bone and/or PLC (Gumley et al., 1982)^[6]

Flexion-distraction injuries - posterior and anterior columns patterns; frequently with VB compression (Gertzbein *et al.*, 1988)^[4]

PLC injury = unstable (Nicoll, 1949; Holdsworth, 1953) [9,15]

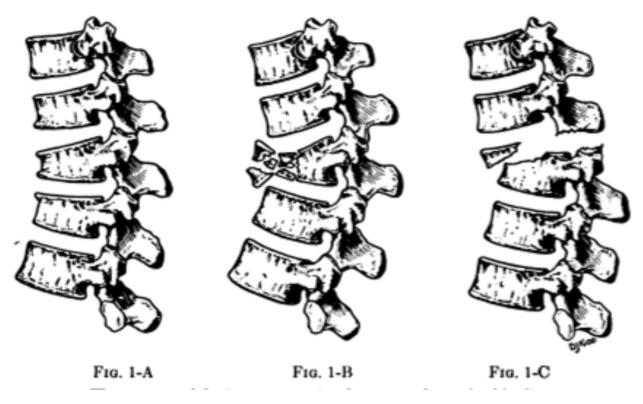
PLC disruption - suspected or injured; potentially unstable or unstable (Vaccaro et al. 2005; Vaccaro et al., 2013)^[21,22]

Review of best classification systems for diagnosing and treating thoracolumbar spine trauma

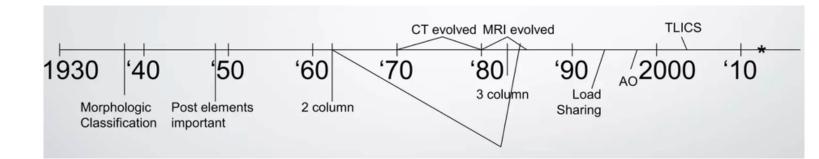

Alecio Cristino Evangelista Santos Barcelos¹, Franz Jooji Onishi², Andrei Fernandes Joaquim³, Ricardo Vieira Botelho⁴

Surgical Neurology International • 2021 • 12(242)

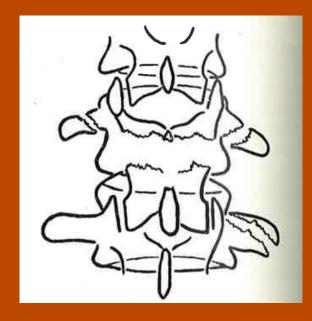
1938 Sir Watson Jones


- Chance 1948
- ➤ 1949 Nicoll
- 1963 Holdsworth
- ➤ 1968 Kelly and Whitesides
- ➤ 1983 Denis
- ➤ 1983 McAfee
- 1984 Ferguson & Allen
- 1994 McCormack & Gaines
- > 1994 Magerl & AO Spine
- ➢ 2005 TLICS
- 2013 AO Spine Trauma Knowledge Forum

Sir Watson-Jones

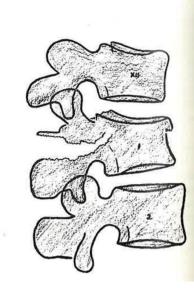

- 252 fractures
- 7 types based on XR morphology
- simple wedge
- comminuted fracture
- fracture-dislocations
- Tx: hyperextension cast for all but dislocations for which there was open reduction followed by casting

Watson-Jones R. The results of postural reduction of fractures of the spine. J Bone Joint Surg Am 1938;20:567-58

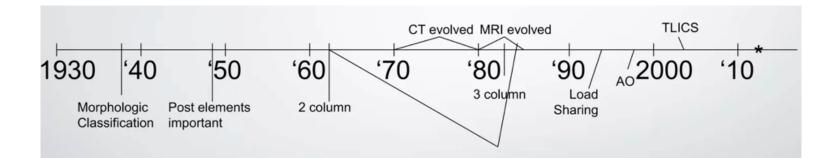

- ➢ 1938 Sir Watson Jones
- ➢ Chance 1948
- ➤ 1949 Nicoll
- 1963 Holdsworth
- 1971 Bedbrook
- ➤ 1983 Denis
- ➢ 1983 McAfee
- > 1984 Ferguson & Allen
- 1994 McCormack & Gaines
- > 1994 Magerl & AO Spine
- ➢ 2005 TLICS
- 2013 AO Spine Trauma Knowledge Forum

NOTE ON A TYPE OF FLEXION FRACTURE OF THE By G. Q. CHANCE, M.B., B.Ch., B.A.O., D.M.R.E. Derbyshire Royal Infirmary, Derby

It consists of a horizontal splitting of the neural arch...


September 1948

Note on a type of Flexion Fracture of the Spine


The fracture which I illustrate is a true flexion though of a rarer type. It consists of a perizontal splitting of the spine and neural arch, berizontal splitting of the spine and neural arch, berizontal splitting of the body just in front of the neural upper surface of the body just in front of the neural upper surface of the body just in front of the neural present surface of the body just in front of the neural upper surface of the body just in front of the neural present in good radiographs its recognition is easy. In my three cases there has been very little wedging of the vertebral body, no dislocation of the apophyseal of the vertebral body, no dislocation of the apophyseal of the vertebral body anatomical explanation of the peruliar site and direction of the fracture. The

importance of the recognition of this fracture lies in the fact that its treatment and prognosis are constant and clear. As there is no major ligamentous damage, the upper half of the fractured neural arch is firmly fixed to the normal arch of the vertebra above, and similarly the lower half is fixed to the vertebra below. The outline of these halves, in a horizontal plane, is therefore still undisturbed, so that a simple hyperextension of the spine must inevitably bring the two halves into perfect anatomical apposition, and give a near 100 per cent. prognosis.

- ➢ 1938 Sir Watson Jones
- Chance 1948
- ➤ 1949 Nicoll
- 1963 Holdsworth
- 1968 Kelly and Whitesides
- ➤ 1983 Denis
- ➤ 1983 McAfee
- 1984 Ferguson & Allen
- 1994 McCormack & Gaines
- > 1994 Magerl & AO Spine
- ➢ 2005 TLICS
- 2013 AO Spine Trauma Knowledge Forum

FRACTURES OF THE DORSO-LUMBAR SPINE

E. A. NICOLL, MANSFIELD, ENGLAND

From the Orthopaedic and Accident Service of the Mansfield General Hospital

Same 3 categories as Sir Watson-Jones:

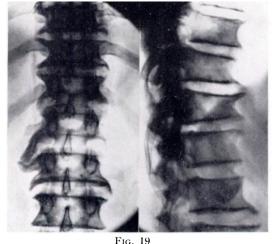

- Simple wedge
- Comminution
- Fracture-dislocation
- -He added Dr. Chance's flexion injury from the year prior

TABLE II Types of Fracture

				Number of cases	Percentage
Anterior wedge fracture .				88	58
Lateral wedge fracture .				21	14
Fracture-dislocation				29	19
Isolated fractures of the neural	arc	h	•	14	9
Total	•			152	100

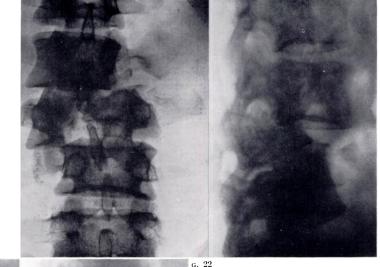
FIG. 18 The owner of the spine whose radiographs are depicted in Fig. 19.

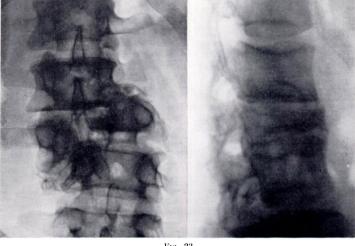
Ability to touch the toes does not mean that the lumbo-dorsal spine is mobile.

Level of Injury in 166 Fractures occurring in 152 Patients

Level of fracture				Number of cases	Percentage of total	
Dorsal 10 and above				7	4.2	
Dorsal 11.				12	7.2	
Dorsal 12.				34	20.5	
Lumbar 1				49	29 •6 ≻66•4	
Lumbar 2				27	16·3	
Lumbar 3				17	10.2	
Lumbar 4				12	7.2	
Lumbar 5			•	8	4.8	
Tot	al		. –	166	100.0	

Number of cases with multiple fractures = 14 (90°)


FRACTURES OF THE DORSO-LUMBAR SPINE


E. A. NICOLL, MANSFIELD, ENGLAND

From the Orthopaedic and Accident Service of the Mansfield General Hospital

- Really interested in outcomes
- His patients were mostly coal miners
- Perfect result was going back to mining full time
- He suggested that some fractures were unstable and there was a risk of increased deformity and possible cord injury with functional activity
- Stable fractures bedrest for 3-4 weeks
- Unstable fractures bedrest in plaster for 4 months TABLE II TYPES OF FRACTURE

			Number of cases	Percentage
Anterior wedge fracture .	•		88	58
Lateral wedge fracture .			21	14
Fracture-dislocation			29	19
Isolated fractures of the neural	arch	l	14	9
Total			152	100

F1G. 23

re deformity and incomplete paraplegia. The spinal cord escaped complete section only by the gap would have been dangerous and overmight have ended in disaster.

Same case as shown in Fig. 22, three years later. Spontaneous fusion with marked deformity. The paraplegia recovered and the patient went on to achieve a perfect functional result. He is now working as an underground ripper.

FRACTURES OF THE DORSO-LUMBAR SPINE

E. A. NICOLL, MANSFIELD, ENGLAND

From the Orthopaedic and Accident Service of the Mansfield General Hospital

- 152 patients
- 30% returned to full mining (50/152)
- 50% of those who returned to full mining had deformity (24/50)
- Good functional result did not require good alignment
- Early mobilization for stable, extended bedrest for unstable

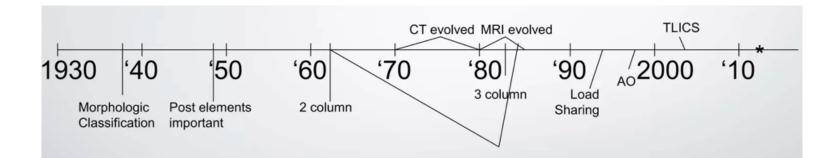

can occur. In practice, spontaneous anterior fusion with deformity gives a better functional result than surgical fusion. Of ten fracture-dislocations treated on these lines, seven returned to full work at the coal-face; all had spontaneous anterior fusion with deformity and they represent the best results of any group in the present series. No patient whose fractured spine has been treated by surgical fusion has ever returned to coal-face work. The advantages of spontaneous anterior fusion are that it is both stronger and more localised. Posterior fusion is mechanically less sound because the graft is under tension instead of compression. Moreover, undamaged vertebrae are usually included in surgical fusion so that four instead of two become fixed.

FIG. 24

Fracture-dislocation of the lumbar spine with locked facets in which stabilisation was achieved spontaneously in the unreduced position. The patient gained a perfect functional result. This radiograph was taken five years after injury.

- > 1938 Sir Watson Jones
- Chance 1948
- ➤ 1949 Nicoll
- 1963 Holdsworth
- 1968 Kelly and Whitesides
- ➤ 1983 Denis
- ➢ 1983 McAfee
- 1984 Ferguson & Allen
- 1994 McCormack & Gaines
- > 1994 Magerl & AO Spine
- ➢ 2005 TLICS
- 2013 AO Spine Trauma Knowledge Forum

Fractures, dislocations, and fracture-dislocations of the spine.

F. Holdsworth • Published 1 February 1963 • Medicine • The Journal of bone and joint surgery. American volume

Sir Frank Wild Holdsworth (1904-1969) was an English Orthopaedic Surgeon.

Eponymously affiliated with the Holdsworth fracture

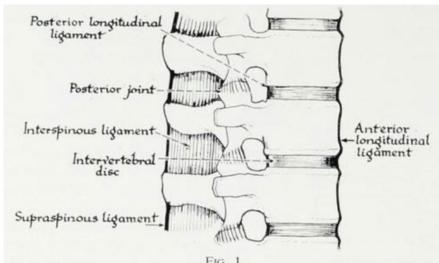
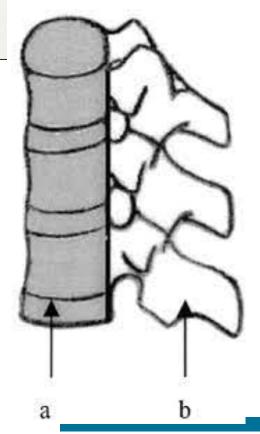



Diagram of the vertebral articulations with the principal ligaments. The intraspinous and supraspinous ligaments, the capsules of the lateral joints and the ligamentum flavum constitute the "posterior ligament complex."

- Separated spine into two columns: anterior weight bearing and posterior tension-bearing column
- Stressed the importance of posterior elements.
- If destabilized, consider surgery
- Patterns of neurological deficits and prognosis for recovery

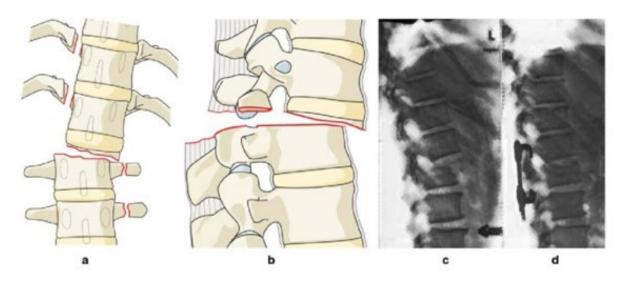
DOI: 10.2106/00004623-197052080-00002 · Corpus ID: 19698902

Fractures, dislocations, and fracture-dislocations of the spine.

E Holdsworth • Published 1 February 1963 • Medicine • The Journal of bone and joint surgery. American volume

Sir Frank Wild Holdsworth (1904-1969) was an English Orthopaedic Surgeon.

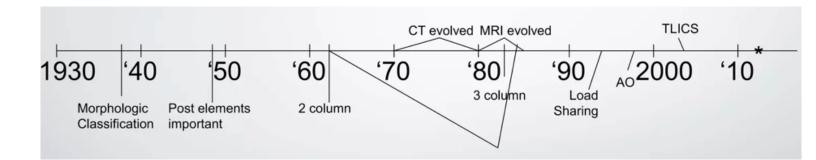
Eponymously affiliated with the Holdsworth fracture



Medical Eponyms

Holdsworth fracture (1963)

Unstable fracture dislocation of the thoraco-lumbar junction of the spine


Slice fracture

- 1. Pure flexion which causes a wedge fracture which is stable.
- 2. Flexion-rotation which produces an unstable fracturedislocation with rupture of the posterior ligament complex, separation of the spinous processes, a slice fracture near the upper border of the lower vertebra, and dislocation of the lower articular processes of the upper vertebra.
- 3. Extension which causes rupture of the intervertebral disc and the anterior common ligament along with avulsion of a small bone fragment from the anterior border of the dislocated vertebra. The dislocation almost always reduces spontaneously and is stable in flexion.
- 4. Vertebral compression which results in a fracture of the end plate as the nucleus of the intervertebral disc is forced into the vertebral body and causes it to burst with outward displacement of fragments of the body. Since the ligaments remain intact this comminuted fracture is stable.
- 5. Shearing which results in forward displacement of the whole vertebra and an unstable fracture of the articular processes or pedicles.

- > 1938 Sir Watson Jones
- Chance 1948
- ➤ 1949 Nicoll
- 1963 Holdsworth
- ➢ 1968 Kelly and Whitesides
- ➤ 1983 Denis
- ➤ 1983 McAfee
- > 1984 Ferguson & Allen
- 1994 McCormack & Gaines
- > 1994 Magerl & AO Spine
- ➢ 2005 TLICS
- 2013 AO Spine Trauma Knowledge Forum

Treatment of Lumbodorsal Fracture-Dislocations

ROBERT P. KELLY, M.D., THOMAS E. WHITESIDES, JR., M.D.

From the Joseph B. Whitehead Department of Surgery (Orthopedics), Emory University School of Medicine, Atlanta, Georgia

FIG. 4. A slice injury has produced the usual tear in the posterior spinous ligament along with hematoma overlying the injured area. The index finger of the palpating hand appreciates the resulting gap between the spinous processes at the affected level.

- Only the junction
- No neurological damage unless posterior elements involved
- Two columns: Vertebral body and Canal
- Laminectomy makes injury worst by destabilizing further
- Stable (wedge and stable burst)
- Unstable (posterior element dislocation)
- If unstable operative approach of stabilization (posterior)
- If anterior column grossly unstable, reconstruct
- 11 cases

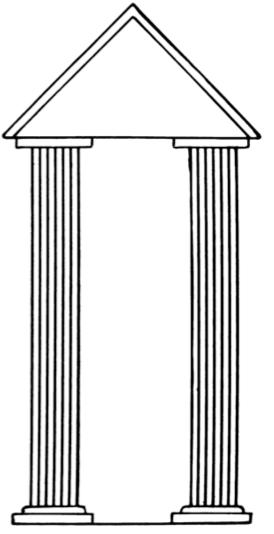
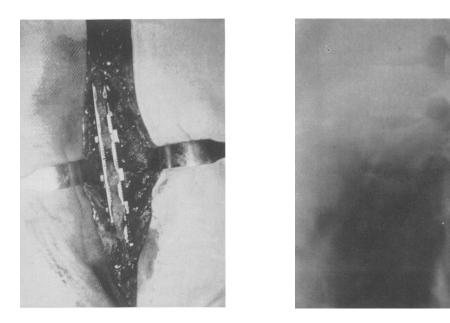


FIG. 1. Schematic representation of the twocolumn weight-bearing function of the spine: One column, e.g., on the right, represents the hollow column of the neural canal; that on the left, the solid column of the vertebral bodies.



Treatment of Lumbodorsal Fracture-Dislocations

ROBERT P. KELLY, M.D., THOMAS E. WHITESIDES, JR., M.D.

From the Joseph B. Whitehead Department of Surgery (Orthopedics), Emory University School of Medicine, Atlanta, Georgia

- Two columns: Vertebral body and Canal
- Laminectomy makes injury worst by destabilizing further
- Unstable (posterior element dislocation)
- If unstable operative approach of stabilization (posterior)
- If anterior column grossly unstable, reconstruct

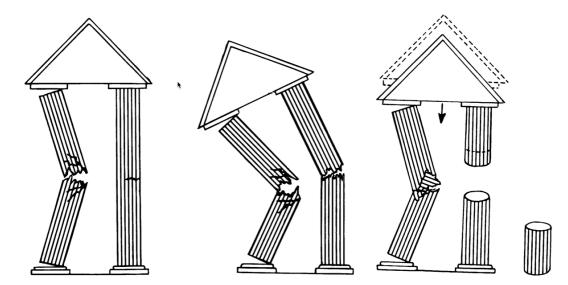


FIG. 20A. The two-column concept of the spine as a weight-bearing structure. With residual stability in the posterior column, anterior collapse is incomplete. B. Loss of posterior column permits pronounced anterior collapse. C. With laminectomy posteriorly and destruction by trauma anteriorly, no stability remains in the spine.

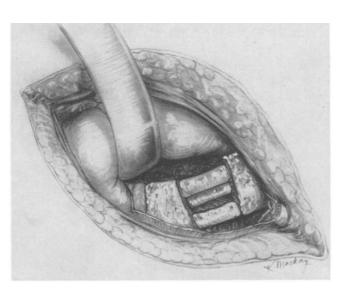
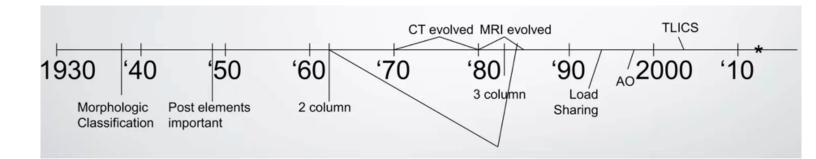
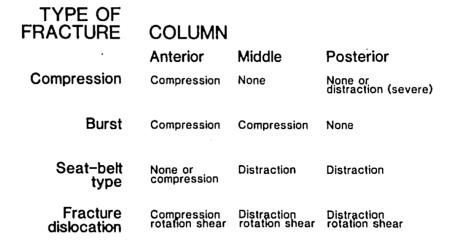
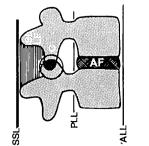
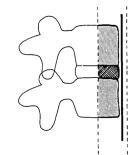



FIG. 15. Dimensions of the D₁₂ body reconstructed by bone grafts.

- > 1938 Sir Watson Jones
- Chance 1948
- ➤ 1949 Nicoll
- 1963 Holdsworth
- 1968 Kelly and Whitesides
- ➢ 1983 Denis
- ➤ 1983 McAfee
- 1984 Ferguson & Allen
- 1994 McCormack & Gaines
- > 1994 Magerl & AO Spine
- ➢ 2005 TLICS
- 2013 AO Spine Trauma Knowledge Forum




817


The Three Column Spine and Its Significance in the Classification of Acute Thoracolumbar Spinal Injuries

FRANCIS DENIS, MD, FRCS(C)

Table 1. Basic Modes of Failure of the Three Columns in the Four Major Types of Spinal Injuries*

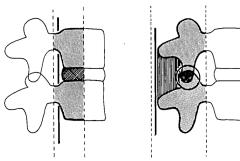
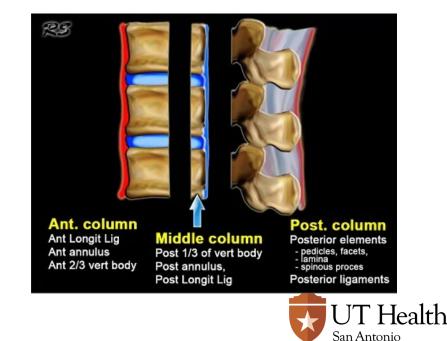



Fig 1. The anterior, middle, and posterior column are illustrated.

The Three Column Spine and Its Significance in the Classification of Acute Thoracolumbar Spinal Injuries

FRANCIS DENIS, MD, FRCS(C)

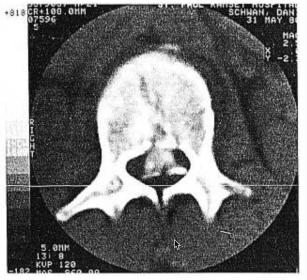
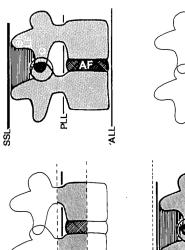



Fig 9. Computerized axial tomogram of a burst fracture. Note the large fragment of bone retropulsed from the posterior wall.

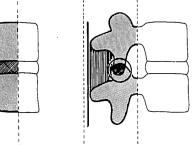


Fig 1. The anterior, middle, and posterior column are illustrated.

- He thought that posterior elements injury alone does not cause instability
- Disruption of middle column (PLL and annulus) make the fracture unstable
- Three degrees of instability: mechanical, neurological, both
- First to use CT to classify injuries
- Surgery is the treatment of choice for ALL burst fractures

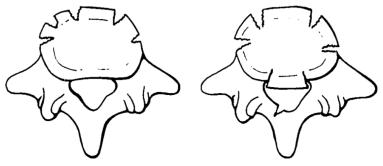
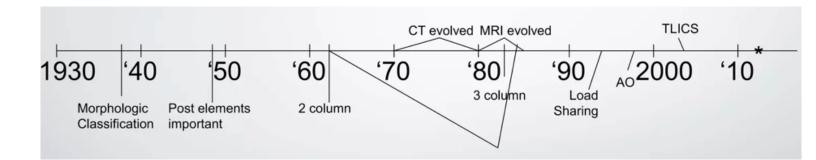
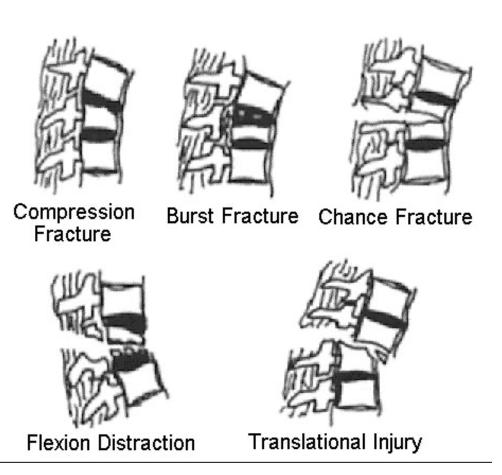
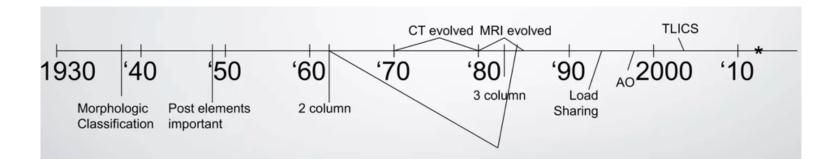
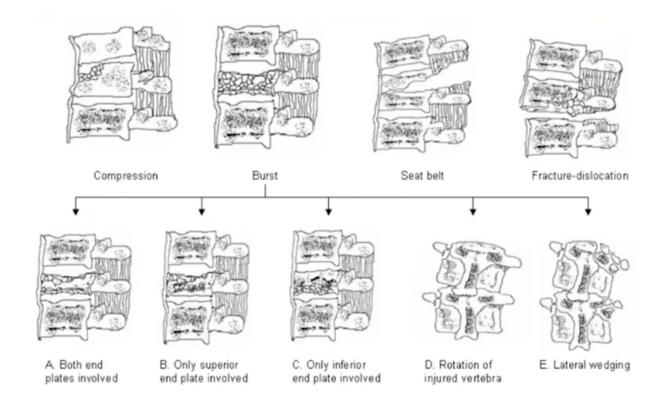



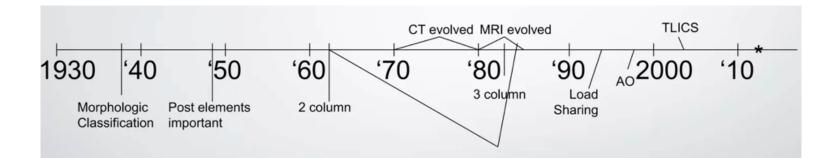
FIg 7. The basic difference between the compression and the burst fracture resides in the middle column. It is intact in the former and fractured in the latter. Note the fracture of the posterior wall as well as the fracture of necessity of the lamina (related to the increased interpediculate distance.)


- > 1938 Sir Watson Jones
- Chance 1948
- ➤ 1949 Nicoll
- 1963 Holdsworth
- 1968 Kelly and Whitesides
- ➤ 1983 Denis
- ➢ 1983 McAfee
- > 1984 Ferguson & Allen
- 1994 McCormack & Gaines
- > 1994 Magerl & AO Spine
- ➢ 2005 TLICS
- 2013 AO Spine Trauma Knowledge Forum


McCafee et al.

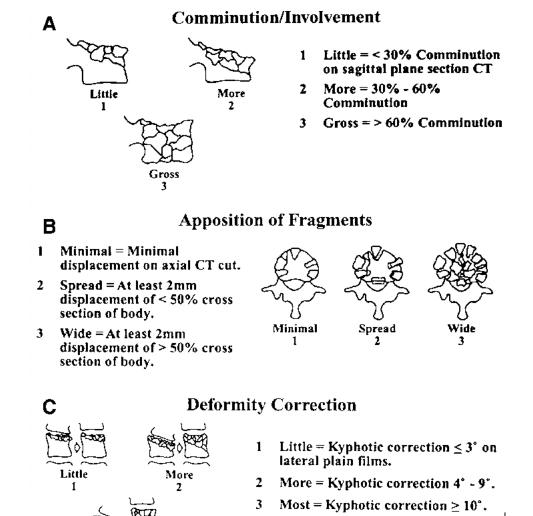
- Six injury patterns:
- Wedge-compression fracture
- Stable burst
- Unstable burst
- Chance
- Flexion-distraction
- Translational


- > 1938 Sir Watson Jones
- Chance 1948
- ➤ 1949 Nicoll
- 1963 Holdsworth
- 1968 Kelly and Whitesides
- ➤ 1983 Denis
- ➤ 1983 McAfee
- 1984 Ferguson & Allen
- 1994 McCormack & Gaines
- > 1994 Magerl & AO Spine
- ➢ 2005 TLICS
- 2013 AO Spine Trauma Knowledge Forum


Ferguson and Allen

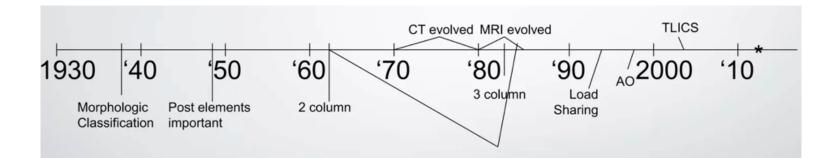
- Ferguson and Allen Combines the work of Denis and McAfee and et al.
- Mechanistic classification to clarify pattern
- Most injuries are result of:
 Compression
 Tension
- Torsion
- Translational forces

- > 1938 Sir Watson Jones
- Chance 1948
- ➤ 1949 Nicoll
- 1963 Holdsworth
- 1968 Kelly and Whitesides
- ➤ 1983 Denis
- ➢ 1983 McAfee
- > 1984 Ferguson & Allen
- 1994 McCormack & Gaines
- > 1994 Magerl & AO Spine
- ➢ 2005 TLICS
- 2013 AO Spine Trauma Knowledge Forum

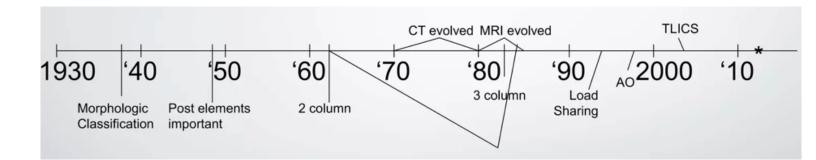


Load Sharing Classification

Devised method of predicting posterior failure


- 1-3 points assigned to the variables below
- Sum the points for a 3-9 scale
 <6 points posterior
 <6 points anterior

Most


h

- > 1938 Sir Watson Jones
- Chance 1948
- ➤ 1949 Nicoll
- 1963 Holdsworth
- 1968 Kelly and Whitesides
- ➤ 1983 Denis
- ➢ 1983 McAfee
- > 1984 Ferguson & Allen
- 1994 McCormack & Gaines
- > 1994 Magerl & AO Spine
- ➢ 2005 TLICS
- 2013 AO Spine Trauma Knowledge Forum

- > 1938 Sir Watson Jones
- Chance 1948
- ➤ 1949 Nicoll
- 1963 Holdsworth
- 1968 Kelly and Whitesides
- ➤ 1983 Denis
- ➤ 1983 McAfee
- > 1984 Ferguson & Allen
- 1994 McCormack & Gaines
- > 1994 Magerl & AO Spine
- ➤ 2005 TLICS
- 2013 AO Spine Trauma Knowledge Forum

Eur Spine J (1994) 3 : 184-201

A comprehensive classification of thoracic and lumbar injuries

F. Magerl¹, M. Aebi², S. D. Gertzbein³, J. Harms⁴, and S. Nazarian⁵

¹ Klinik für Orthopädische Chirurgie, Kantonsspital, St. Gallen, Switzerland
 ² Division of Orthopaedic Surgery, McGill University, Montreal, Quebec, Canada
 ³ Texas Back Institute, Crawford, Texas, USA
 ⁴ Rehabilitationskrankenhaus, Karlsbad-Langensteinbach, Germany
 ⁵ Höspital de la Conception, Marseille, France

Type A. Vertebral body compression

A1. Impaction fractures

- A1.1. Endplate impaction
- A1.2. Wedge impaction fractures1 Superior wedge impaction fracture2 Lateral wedge impaction fracture3 Inferior wedge impaction fracture
- A1.3. Vertebral body collapse
- A2. Split fractures
 - A2.1. Sagittal split fracture
 - A2.2. Coronal split fracture
 - A2.3. Pincer fracture
- A3. Burst fractures
 - A3.1. Incomplete burst fracture
 - 1 Superior incomplete burst fracture
 - 2 Lateral incomplete burst fracture
 - 3 Inferior incomplete burst fracture
 - A3.2. Burst-split fracture
 - 1 Superior burst-split fracture
 - 2 Lateral burst-split fracture
 - 3 Inferior burst-split fracture
 - A3.3. Complete burst fracture
 - 1 Pincer burst fracture
 - 2 Complete flexion burst fracture
 - 3 Complete axial burst fracture

Table 2. Type B injuries: groups, subgroups, and specifications

Type B. Anterior and posterior element injury with distraction

- B1. Posterior disruption predominantly ligamentous (flexiondistraction injury)
 - B1.1. With transverse disruption of the disc 1 Flexion-subluxation
 - 2 Anterior dislocation

European Spine Journal

© Springer-Verlag 1994

- 2 Anterior dislocation
- 3 Flexion-subluxation/anterior dislocation with fracture of the articular processes
- B1.2. With type A fracture of the vertebral body 1 Flexion-subluxation + type A fracture
 - 2 Anterior dislocation + type A fracture
 - 3 Flexion-subluxation/anterior dislocation with fracture of the articular processes + type A fracture
- B2. Posterior disruption predominantly osseous (flexiondistraction injury)
 - B2.1. Transverse bicolumn fracture
 - B2.2. With transverse disruption of the disc
 - 1 Disruption through the pedicle and disc 2 Disruption through the pars interarticularis and
 - disc (flexion-spondylolysis)
 - B2.3. With type A fracture of the vertebral body
 1 Fracture through the pedicle + type A fracture
 2 Fracture through the pars interarticularis (flexion-spondylolysis) + type A fracture
- B3. Anterior disruption through the disc (hyperextension-shear injury)
 - B3.1. Hyperextension-subluxations1 Without injury of the posterior column2 With injury of the posterior column
 - B3.2. Hyperextenion-spondylolysis
 - B3.3. Posterior dislocation

Table 3. Type C injuries: groups, subgroups, and specifications

Type C. Anterior and posterior element injury with rotation

- C1. Type A injuries with rotation (compression injuries with rotation)
 - C1.1. Rotational wedge fracture
 - C1.2. Rotational split fractures
 - 1 Rotational sagittal split fracture
 - 2 Rotational coronal split fracture
 - 3 Rotational pincer fracture4 Vertebral body separation
 - C1.3. Rotational burst fractures
 - 1 Incomplete rotational burst fracture
 - 2 Rotational burst-split fracture
 - 3 Complete rotational burst fracture
- C2. Type B injuries with rotation

C2.1 – B1 injuries with rotation (flexion-distraction injuries with rotation)

- 1 Rotational flexion subluxation
- 2 Rotational flexion subluxation with unilateral articular process fracture
- 3 Unilateral dislocation
- 4 Rotational anterior dislocation without/with fracture of articular processes
 5 Rotational flexion subluxation without/with
- 6 Unilateral dislocation + type A fracture
- 7 Rotational anterior dislocation without/with fracture of articular processes + type A fracture
- $\label{eq:C2.2-B2} \begin{array}{c} \text{C2.2-B2 injuries with rotation (flexion distraction injuries} \\ \text{with rotation)} \end{array}$
 - Rotational transverse bicolumn fracture
 Unilateral flexion spondylolysis with disruption of the disc
 - 3 Unilateral flexion spondylolysis + type A fracture
- C2.3 B3 injuries with rotation (hyperextension-shear injuries with rotation)
 1. Retational hyperextension sublucation without
 - Rotational hyperextension-subluxation without/with fracture of posterior vertebral elements
 Unilateral hyperextension-spondylolysis
 - 3 Posterior dislocation with rotation
- C3. Rotational-shear injuries
 - C3.1 Slice fracture
 - C3.2. Oblique fracture

- Last in the descriptive
 - era

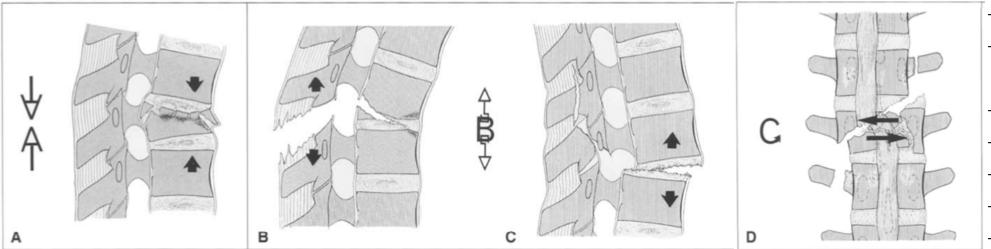
53 types

- Highly detailed
- Based on 1445 cases
- Based on 2 column

concept

- Compression
- Distraction
- Axial torque
- Intrarater
- Interrater
 - no data on stability
 - No treatment decision

Original articles


European Spine Journal © Springer-Verlag 1994

Eur Spine J (1994) 3 : 184-201

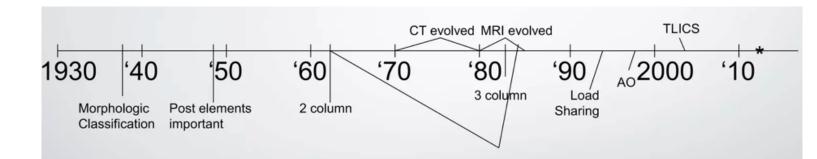
A comprehensive classification of thoracic and lumbar injuries

F. Magerl¹, M. Aebi², S. D. Gertzbein³, J. Harms⁴, and S. Nazarian⁵

¹ Klinik für Orthopädische Chirurgie, Kantonsspital, St. Gallen, Switzerland
 ² Division of Orthopaedic Surgery, McGill University, Montreal, Quebec, Canada
 ³ Texas Back Institute, Crawford, Texas, USA
 ⁴ Rehabilitationskrankenhaus, Karlsbad-Langensteinbach, Germany
 ⁵ Höspital de la Conception, Marseille, France

53 types

- Last in the descriptive


era

- Highly detailed
- Based on 1445 cases
- Based on 2 column concept
- Compression
- Distraction
- Axial torque
- Intrarater
- Interrater
- no data on stability
- No treatment decision

100 years of Classifications

- > 1938 Sir Watson Jones
- Chance 1948
- ➤ 1949 Nicoll
- 1963 Holdsworth
- 1968 Kelly and Whitesides
- ➤ 1983 Denis
- ➤ 1983 McAfee
- 1984 Ferguson & Allen
- 1994 McCormack & Gaines
- > 1994 Magerl & AO Spine
- ➢ 2005 TLICS
- 2013 AO Spine Trauma Knowledge Forum

SPINE Volume 30, Number 20, pp 2325-2333 ©2005, Lippincott Williams & Wilkins, Inc.

A New Classification of Thoracolumbar Injuries

The Importance of Injury Morphology, the Integrity of the Posterior Ligamentous Complex, and Neurologic Status

Alexander R. Vaccaro, MD,* Ronald A. Lehman, Jr., MD,† R. John Hurlbert, MD, PhD,‡ Paul A. Anderson, MD,§ Mitchel Harris, MD,∥ Rune Hedlund, MD,¶ James Harrop, MD,∉ Marcel Dvorak, MD,** Kirkham Wood, MD,†† Michael G. Fehlings, MD, PhD,‡‡ Charles Fisher, MD, MHSc,** Steven C. Zeiller, MD,* D. Greg Anderson, MD,* Christopher M. Bono, MD,§§ Gordon H. Stock, MD,* Andrew K. Brown, MD,* Timothy Kuklo, MD,† and F. C. Öner, MD, PhD[]]

- A parameter can be scored 0-4 points and the total score is the sum of these parameters with a maximum of 10 points.
- The total score predicts the need for surgery as is shown in the TLICS algorithm.
- A total of more than 4 points indicates surgical treatment.
- The integrity of the posterior ligamentous complex plays an important role in the TLICS. Sometimes it will be possible to determine PLC injury on CT, but MRI may be necessary.

TLICS 3 independent predictors

Morphology 1 immediate stability		 Compression Burst Translation/rotation Distraction 	1 2 3 4	 Radiographs CT
2	Integrity of PLC longterm stability	 Intact Suspected Injured 	0 2 3	- MRI
3	Neurological status	 Intact Nerve root Complete cord Incomplete cord Cauda equina 	0 2 3 3	- Physical examination
Predicts		 Need for surgery 	0-3 4 >4	 nonsurgical surgeon's choice surgical

SPINE Volume 30, Number 20, pp 2325-2333 ©2005, Lippincott Williams & Wilkins, Inc.

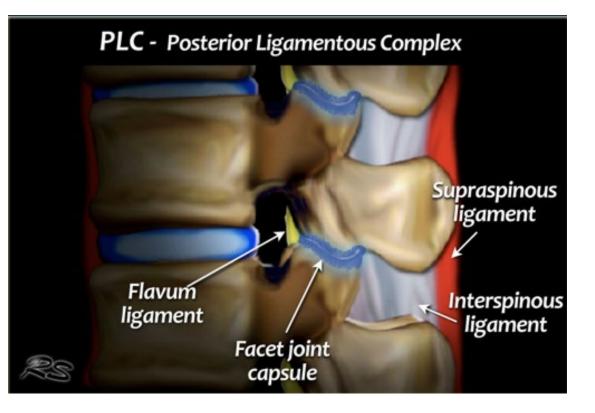
A New Classification of Thoracolumbar Injuries

The Importance of Injury Morphology, the Integrity of the Posterior Ligamentous Complex, and Neurologic Status

Alexander R. Vaccaro, MD,* Ronald A. Lehman, Jr., MD,† R. John Hurlbert, MD, PhD,‡ Paul A. Anderson, MD,§ Mitchel Harris, MD,∥ Rune Hedlund, MD,¶ James Harrop, MD,∉ Marcel Dvorak, MD,** Kirkham Wood, MD,†† Michael G. Fehlings, MD, PhD,‡‡ Charles Fisher, MD, MHSc,** Steven C. Zeiller, MD,* D. Greg Anderson, MD,* Christopher M. Bono, MD,§§ Gordon H. Stock, MD,* Andrew K. Brown, MD,* Timothy Kuklo, MD,† and F. C. Öner, MD, PhD|||

Compression 1 pnt	Burst 2 pnts
- Simple compression	- Compression with retro-
- Wedge deformity	pulsion of superoposterior body fragment
Translation/rotation 3 pnts	Distraction 4 pnts
	and the second s

TLICS 3 independent predictors


1	Morphology immediate stability	 Compression Burst Translation/rotation Distraction 	1 2 3 4	 Radiographs CT
2	Integrity of PLC longterm stability	 Intact Suspected Injured 	0 2 3	- MRI
3	Neurological status	 Intact Nerve root Complete cord Incomplete cord Cauda equina 	0 2 2 3 3	 Physical examination
Predicts		 Need for surgery 	0-3 4 >4	 nonsurgical surgeon's choice surgical

A New Classification of Thoracolumbar Injuries

The Importance of Injury Morphology, the Integrity of the Posterior Ligamentous Complex, and Neurologic Status

Alexander R. Vaccaro, MD,* Ronald A. Lehman, Jr., MD,† R. John Hurlbert, MD, PhD,‡ Paul A. Anderson, MD,§ Mitchel Harris, MD,∥ Rune Hedlund, MD,¶ James Harrop, MD,∉ Marcel Dvorak, MD,** Kirkham Wood, MD,†† Michael G. Fehlings, MD, PhD,‡‡ Charles Fisher, MD, MHSc,** Steven C. Zeiller, MD,* D. Greg Anderson, MD,* Christopher M. Bono, MD,§§ Gordon H. Stock, MD,* Andrew K. Brown, MD,* Timothy Kuklo, MD,† and F. C. Öner, MD, PhD∭

2	Integrity of PLC longterm stability	 Intact Suspected Injured 	0 2 3	- MRI
---	--	--	-------------	-------

CT features of PLC pathology are:

- Widening of the interspinous space.
- Avulsion fractures or transverse fractures of spinous processes or articular facets.
- Widening or dislocation of facet joints.
- Vertebral body translation or rotation.

When the PLC is definitely injured on CT, it can already be scored as 3.

SPINE Volume 30, Number 20, pp 2325-2333 ©2005, Lippincott Williams & Wilkins, Inc.

A New Classification of Thoracolumbar Injuries

The Importance of Injury Morphology, the Integrity of the Posterior Ligamentous Complex, and Neurologic Status

Alexander R. Vaccaro, MD,* Ronald A. Lehman, Jr., MD,† R. John Hurlbert, MD, PhD,‡ Paul A. Anderson, MD,§ Mitchel Harris, MD,∥ Rune Hedlund, MD,¶ James Harrop, MD,∉ Marcel Dvorak, MD,** Kirkham Wood, MD,†† Michael G. Fehlings, MD, PhD,‡‡ Charles Fisher, MD, MHSc,** Steven C. Zeiller, MD,* D. Greg Anderson, MD,* Christopher M. Bono, MD,§§ Gordon H. Stock, MD,* Andrew K. Brown, MD,* Timothy Kuklo, MD,† and F. C. Öner, MD, PhD∭

2	Integrity of PLC longterm stability	 Intact Suspected Injured 	0 2 3	- MRI
---	--	--	-------------	-------

If no dislocations or disruption on CT

Integrity of Posterior Ligamentous Complex

- Intact 0 pnt
- Suspected injury 2 pnts
- Injured 3 pnts

3 points

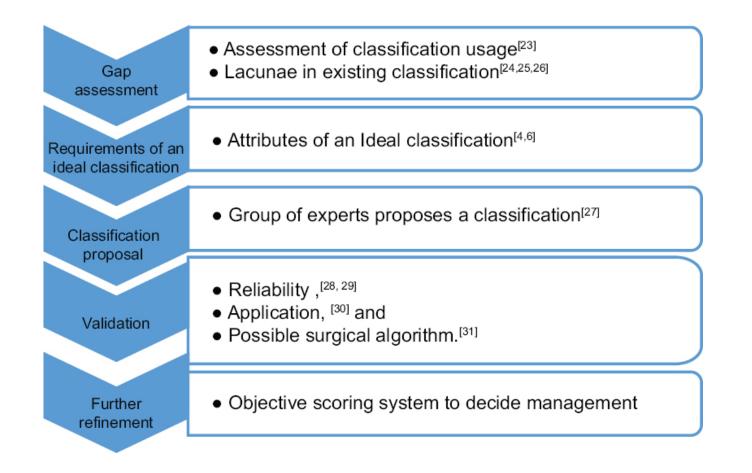
Loss of normal low signal intensity of the ligamenta flava or supraspinous ligaments on T1 and T2.

Indeterminate: 2 points

Edema without clear rupture; high signal intensity of the interspinous ligaments or along the facet joints on T2 STIR.

A New Classification of Thoracolumbar Injuries

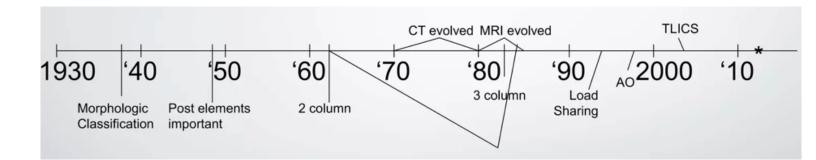
The Importance of Injury Morphology, the Integrity of the Posterior Ligamentous Complex, and Neurologic Status


Alexander R. Vaccaro, MD,* Ronald A. Lehman, Jr., MD,† R. John Hurlbert, MD, PhD,‡ Paul A. Anderson, MD,§ Mitchel Harris, MD,∥ Rune Hedlund, MD,¶ James Harrop, MD,∉ Marcel Dvorak, MD,** Kirkham Wood, MD,†† Michael G. Fehlings, MD, PhD,‡‡ Charles Fisher, MD, MHSc,** Steven C. Zeiller, MD,* D. Greg Anderson, MD,* Christopher M. Bono, MD,§§ Gordon H. Stock, MD,* Andrew K. Brown, MD,* Timothy Kuklo, MD,† and F. C. Öner, MD, PhD[]]

- Better interobserver reliability AO
- First to inform about patient care
- Practical
- Comprehensive
- Drawback is the feasibility of MRI for PLC
- Generalized recommendations

TLICS 3 independent predictors

Morphology 1 immediate stability		 Compression Burst Translation/rotation Distraction 	1 2 3 4	 Radiographs CT 	
2	Integrity of PLC longterm stability	 Intact Suspected Injured 	0 2 3	- MRI	
3	Neurological status	 Intact Nerve root Complete cord Incomplete cord Cauda equina 	0 2 3 3	 Physical examination 	
Predicts		 Need for surgery 	0-3 4 >4	 nonsurgical surgeon's choice surgical 	



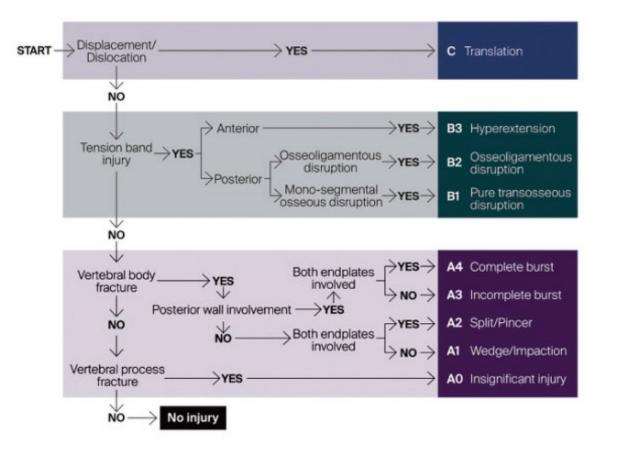
100 years of Classifications

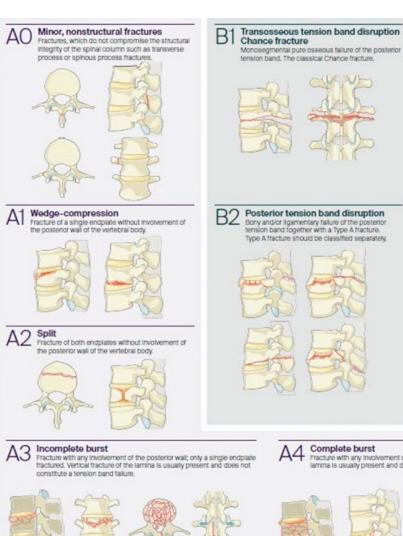
- > 1938 Sir Watson Jones
- Chance 1948
- ➤ 1949 Nicoll
- 1963 Holdsworth
- 1968 Kelly and Whitesides
- ➤ 1983 Denis
- ➢ 1983 McAfee
- 1984 Ferguson & Allen
- 1994 McCormack & Gaines
- > 1994 Magerl & AO Spine
- ➤ 2005 TLICS
- 2013 AO Spine Trauma Knowledge Forum

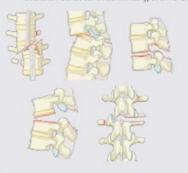
DIAGNOSTICS

AOSpine Thoracolumbar Spine Injury Classification System

Fracture Description, Neurological Status, and Key Modifiers


Alexander R. Vaccaro, MD, PhD,* Cumhur Oner, MD, PhD,† Christopher K. Kepler, MD, MBA,* Marcel Dvorak, MD,‡ Klaus Schnake, MD,§ Carlo Bellabarba, MD,¶ Max Reinhold, MD,∥ Bizhan Aarabi, MD,** Frank Kandziora, MD, PhD,§ Jens Chapman, MD,†† Rajasekaran Shanmuganathan, MD, PhD,‡‡ Michael Fehlings, MD, PhD,§§ Luiz Vialle, MD, PhD,¶¶ and for the AOSpine Spinal Cord Injury & Trauma Knowledge Forum


- AO Spine Trauma Knowledge Forum
- Improve upon AO/Magerl and TLICS
- Based on 3 parameters: fracture morphology, Neurological status and clinical modifiers
- Morphology simplified Magerl scheme
- Multilevel classified by individual spinal level (i.e. L1-L2 type B2 with L3 A4)
- From 53 types to 9
- Case specific modifiers
- Reliability studies k 0.64 and k 0.77
- Initially did not include treatment recommendations
- After validation 74 Spine Surgeons established a hierarchy of severity
- TL AOSIS in 2015
- TLISS 2015


AO

AO Spine Thoracolumbar Injury Classification System

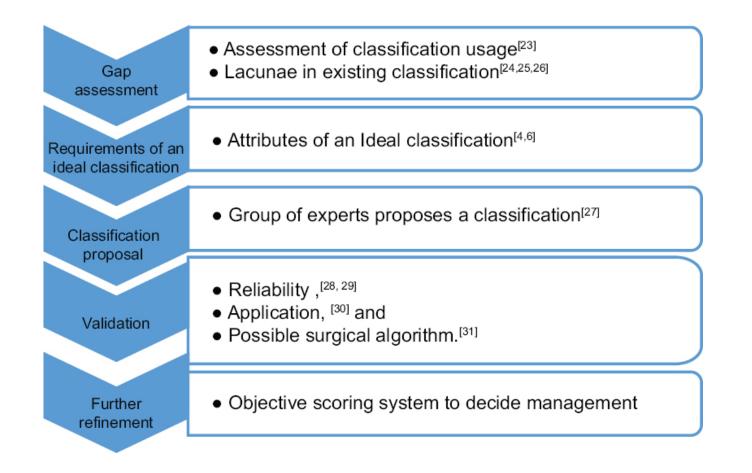

C Displacement or dislocation There are no subtypes because various configurations are possible due to dissociation/ dislocation. Can be combined with subtypes of A or B.

- B3 Hyperextension
 - Injury through the disc or vertebral body leading to a typerextended position of the spinal column. Commonly seen in ankylotic disorders. Anterior structures, especially the ALL are ruptured but there is a posterior hinge preventing turther displacement.

4 Fracture with any involvement of the posterior wall and both endplates. Vertical fracture of the lamina is usually present and does not constitute a tension band failure.

AO

AO Spine Thoracolumbar Injury Classification System


Neurology

Туре	Neurological	Туре	Description	
NO	Neurology intact		This modifier is u fractures with an	
N1	Transient neurologic deficit		injury to the tensi on spinal imaging MRI. This modifie designating thos injuries from a bo	
N2	Radicular symptoms	M1		
N3	Incomplete spinal cord injury or any degree of cauda equina injury		which ligamentou help determine w stabilization is a c	
N4	Complete spinal cord injury		Is used to design comorbidity, which for or against sur- relative surgical in of an M2 modifier spondylitis or bur overlying the injur	
NX	Cannot be examined	M2		
+	Continued spinal cord compression			

Modifiers

Туре	Description
M1	This modifier is used to designate fractures with an indeterminate injury to the tension band based on spinal imaging with or without MRI. This modifier is important for designating those injuries with stable injuries from a bony standpoint for which ligamentous insufficiency may help determine whether operative stabilization is a consideration.
M2	Is used to designate a patient-specific comorbidity, which might argue either for or against surgery for patients with relative surgical indications. Examples of an M2 modifier include ankylosing spondylitis or burns affecting the skin overlying the injured spine.

DIAGNOSTICS

AOSpine Thoracolumbar Spine Injury Classification System

Fracture Description, Neurological Status, and Key Modifiers

Alexander R. Vaccaro, MD, PhD,* Cumhur Oner, MD, PhD,† Christopher K. Kepler, MD, MBA,* Marcel Dvorak, MD,‡ Klaus Schnake, MD,§ Carlo Bellabarba, MD,¶ Max Reinhold, MD,∥ Bizhan Aarabi, MD,** Frank Kandziora, MD, PhD,§ Jens Chapman, MD,†† Rajasekaran Shanmuganathan, MD, PhD,‡‡ Michael Fehlings, MD, PhD,§§ Luiz Vialle, MD, PhD,¶¶ and for the AOSpine Spinal Cord Injury & Trauma Knowledge Forum

- TL AOSIS in 2015
- 100 surgeons from around the world

Table 1 Demographics of respondents

Region of reviewer	n
Europe	14
Asia Pacific	21
Latin America	18
Middle East	11
North America	9
Africa	1
Experience of reviewer (y)	
1–10	21
11–20	34
21+	19

Global Spine Journal Volume 6, Issue 4, June 2016, Pages 329-334 © 2016 Georg Thieme Verlag KG Stuttgart · New York, Article Reuse Guidelines https://doi.org/10.1055/s-0035-1563610

(SAGE journals

Original Article

The Thoracolumbar AOSpine Injury Score

Christopher K. Kepler, Alexander R. Vaccaro, Gregory D. Schroeder, MD, John D. Koerner, Luiz R. Vialle, Bizhan Aarabi, Shanmuganathan Rajasekaran, Carlo Bellabarba, Jens R. Chapman, Frank Kandziora, Klaus J. Schnake, Marcel F. Dvorak, Max Reinhold, and F. Cumhur Oner

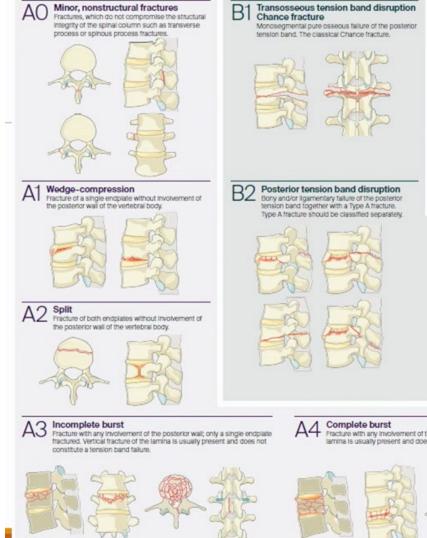
Table 2 Average injury severity score for each variable inAOSpine Thoracolumbar Injury Classification System

Туре	n	Mean	SD
A0	74	5.09	5.07
A1	74	14.78	7.74
A2	74	29.81	14.41
A3	74	44.68	16.99
A4	74	59.7	18.77
B1	74	54.88	18.41
B2	74	69.09	17.66
B3	74	71.49	15.94
С	74	94.8	10.18
N0	72	1.08	3.13
N1	72	19.19	17.14
N2	72	33.57	16.9
N3	72	79.79	19.07
N4	72	91.36	14.48
NX	72	66.96	28.42
M1	72	50	23.67
M2	72	62.4	24.18

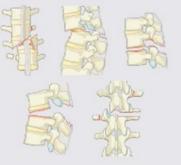
Abbreviation: SD, standard deviation.

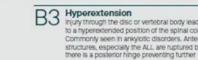
Global Spine Journal Volume 6, Issue 4, June 2016, Pages 329-334 © 2016 Georg Thieme Verlag KG Stuttgart · New York, Article Reuse Guidelines https://doi.org/10.1055/s-0035-1563610

Original Article


The Thoracolumbar AOSpine Injury Score

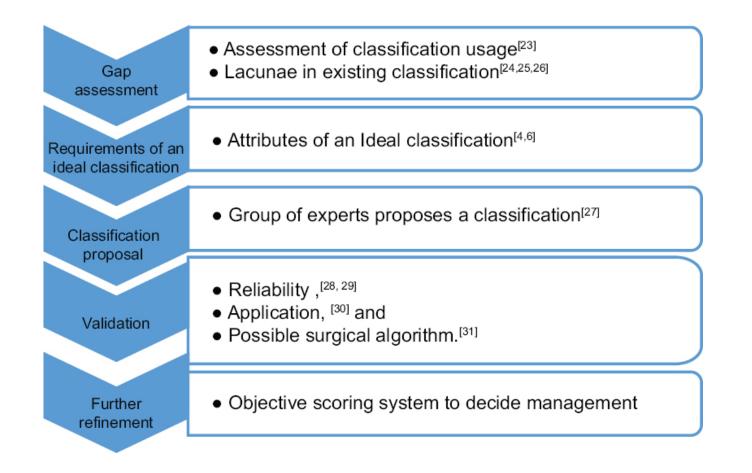
Christopher K. Kepler, Alexander R. Vaccaro, Gregory D. Schroeder, MD, John D. Koerner, Luiz R. Vialle, Bizhan Aarabi, Shanmuganathan Rajasekaran, Carlo Bellabarba, Jens R. Chapman, Frank Kandziora, Klaus J. Schnake, Marcel F. Dvorak, Max Reinhold, and F. Cumhur Oner


Table 3 Point allocation for morphologic groups


Subgroup	Points	
Type A—compression fractures		
A0	0	
A1	1	
A2	2	
A3	3	
A4	5	
Type B—tension band injuries		
B1	5	
B2	6	
B3	7	
Type C—translational injuries		
С	8	

TL AOSIS in 2015 100 surgeons from around the world

Displacement or dislocation С There are no subtypes because various configurations are possible due to dissociation/ dislocation. Can be combined with subtypes of A or B.



injury through the disc or vertebral body leading to a hyperextended position of the spinal column Commonly seen in ankylotic disorders. Anterior structures, especially the ALL are ruptured but

Fracture with any involvement of the posterior wall and both endplates. Vertical fracture of the lamina is usually present and does not constitute a tension band failure.

Global Spine Journal Volume 6, Issue 4, June 2016, Pages 329-334 © 2016 Georg Thieme Verlag KG Stuttgart · New York, Article Reuse Guidelines https://doi.org/10.1055/s-0035-1563610

Original Article

The Thoracolumbar AOSpine Injury Score

Christopher K. Kepler, Alexander R. Vaccaro, Gregory D. Schroeder, MD, John D. Koerner, Luiz R. Vialle, Bizhan Aarabi, Shanmuganathan Rajasekaran, Carlo Bellabarba, Jens R. Chapman, Frank Kandziora, Klaus J. Schnake, Marcel F. Dvorak, Max Reinhold, and F. Cumhur Oner

 Table 4
 Point allocation for neurologic status and modifiers

Subgroup	Points		
Neurologic status			
N0	0		
N1	1		
N2	2		
N3	4		
N4	4		
Nx	3		
Patient-specific modifiers			
M1	1		
M2	0		

TL AOSIS in 2015 100 surgeons from around the world

Neurology

Туре	Neurological	
NO	Neurology intact	
N1	Transient neurologic deficit	
N2	Radicular symptoms	
N3	Incomplete spinal cord injury or any degree of cauda equina injury	
N4	Complete spinal cord injury	
NX	Cannot be examined	
+	Continued spinal cord compression	

Global Spine Journal Volume 6, Issue 4, June 2016, Pages 329-334 © 2016 Georg Thieme Verlag KG Stuttgart · New York, Article Reuse Guidelines https://doi.org/10.1055/s-0035-1563610

Original Article

The Thoracolumbar AOSpine Injury Score

Christopher K. Kepler, Alexander R. Vaccaro, Gregory D. Schroeder, MD, John D. Koerner, Luiz R. Vialle, Bizhan Aarabi, Shanmuganathan Rajasekaran, Carlo Bellabarba, Jens R. Chapman, Frank Kandziora, Klaus J. Schnake, Marcel F. Dvorak, Max Reinhold, and F. Cumhur Oner

Table 4 Point allocation for neurologic status and modifiers

Subgroup	Points		
Neurologic status			
NO	0		
N1	1		
N2	2		
N3	4		
N4	4		
Nx	3		
Patient-specific modifiers			
M1	1		
M2	0		

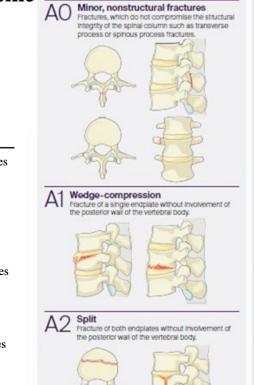
TL AOSIS in 2015 100 surgeons from around the world

Modifiers

Туре	Description	
M1	This modifier is used to designate fractures with an indeterminate injury to the tension band based on spinal imaging with or without MRI. This modifier is important for designating those injuries with stable injuries from a bony standpoint for which ligamentous insufficiency may help determine whether operative stabilization is a consideration.	
M2	Is used to designate a patient-specific comorbidity, which might argue either for or against surgery for patients with relative surgical indications. Example of an M2 modifier include ankylosing spondylitis or burns affecting the skill	

overlying the injured spine.

ORIGINAL ARTICLE


The surgical algorithm for the AOSpine thoracolumbar spine injury classification system

Alexander R. Vaccaro¹ · Gregory D. Schroeder¹ · Christopher K. Kepler¹ · F. Cumhur Oner² · Luiz R. Vialle³ · Frank Kandziora⁴ · John D. Koerner¹ · Mark F. Kurd¹ · Max Reinhold⁵ · Klaus J. Schnake⁶ · Jens Chapman⁷ · Bizhan Aarabi⁸ · Michael G. Fehlings⁹ · Marcel F. Dvorak¹⁰

- <4 Trial non operative
- >5 Early operative intervention
- 4 or 5 either treatment based on modifiers and surgeon's preference

Classification	n Points
Туре А—сон	npression injurie
A0	0
A1	1
A2	2
A3	3
A4	5
Type B-ten	sion band injurie
B1	5
B2	6
B3	7
Type C-tran	nslational injuries
С	8
Neurologic s	tatus
N0	0
N1	1
N2	2
N3	4
N4	4
NX	3
Patient-speci	fic modifiers
M 1	1
M2	0

TL AOSIS in 2015 100 surgeons from around the world

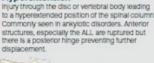
A3 Incomplete burst

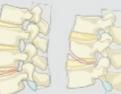
constitute a tension band failure.

Fracture with any involvement of the posterior wail; only a single endplate fractured. Vertical fracture of the lamina is usually present and does not

B1 Transosseous tension band disruption Chance fracture Monosegmental pure osseous failure of the posterior tension band. The classical Chance fracture.

Displacement or dislocation


There are no subtypes because various


configurations are possible due to dissociation/

dislocation. Can be combined with subtypes of A or B.

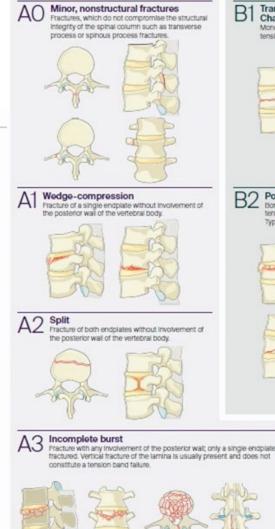
Posterior tension band disruption Bory and/or ligamentary talue of the posterior tension band together with a Type A fracture. Type A fracture should be classified separately.

A4 Complete burst

Fracture with any involvement of the posterior wall and both endplates. Vertical fracture of the lamina is usually present and does not constitute a tension band failure.

ORIGINAL ARTICLE

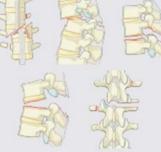
The surgical algorithm for the AOSpine thoracolumbar spine injury classification system


Alexander R. Vaccaro¹ · Gregory D. Schroeder¹ · Christopher K. Kepler¹ · F. Cumhur Oner² · Luiz R. Vialle³ · Frank Kandziora⁴ · John D. Koerner¹ · Mark F. Kurd¹ · Max Reinhold⁵ · Klaus J. Schnake⁶ · Jens Chapman⁷ · Bizhan Aarabi⁸ · Michael G. Fehlings⁹ · Marcel F. Dvorak¹⁰

Turn non-operative case to surgical case and vice versa

- Open fractures
- Overlying bums
- Inability to brace ٠
- Ankylosing spondylitis / DISH1 Metabolic bone disease
- Sternal fracture •
- Multiple rib fractures at same or adjacent levels • as fracture
- Multiple trauma ٠
- Coronal plane deformity
- Severe closed head injury
- Age/ General health

TL AOSIS in 2015


100 surgeons from around the world

Transosseous tension band disruption Chance fracture Monosegmental pure ossegus failure of the posterior tension band. The classical Chance fracture

Hyperextension Injury through the disc or vertebral body leading to a hyperextended position of the spinal column Commonly seen in ankylotic disorders. Anterior structures, especially the ALL are ruptured but there is a posterior hinge preventing further

Complete burst Α4

Fracture with any involvement of the posterior wall and both endplates. Vertical fracture of the lamina is usually present and does not constitute a tension band failure.

Classification of Fractures

An ideal classification would be:

- Simple
- Include vast majority of injuries
- Reflect mechanism of injury
- Correspond to anatomic pathology
- Determine treatment options
- Determine prognosis

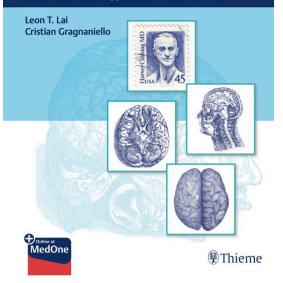
How to Treat Thoracolumbar and Lumbar Fractures

Compression Fractures

- No Brace for majority
- Brace vs Posterior instrumentation for multilevel ?

Stable Burst Fractures

- No Brace for majority, brace for minority
- Surgery (usually posterior) for multilevel or concomitant injuries


Thank you!

Neurosurgical Diseases

An Evidence-Based Approach to Guide Practice

Operative Cranial Neurosurgical Anatomy

Filippo Gagliardi Cristian Gragnaniello Pietro Mortini Anthony J. Caputy

Thieme

Neurosurgery Practice Questions and Answers

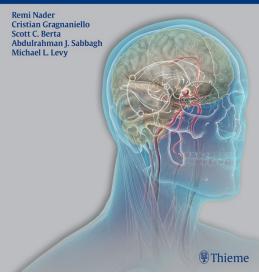
Mark R. Shaya Cristian Gragnaniello Remi Nader

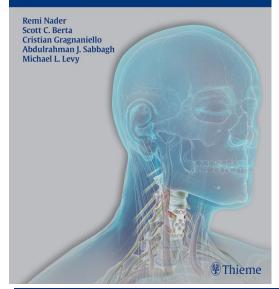
Thieme

Second Edition

Neurosurgery Rounds: Questions and Answers

Mark R. Shaya Cristian Gragnaniello Remi Nader




Neurosurgery Tricks of the Trade

Cranial

Questions?

Neurosurgery Tricks of the Trade Spine and Peripheral Nerves

Neurosurgery Case Review: Questions and Answers

Remi Nader Abdulrahman J. Sabbagh Samer K. Elbabaa Hosam Al-Jehani Jaime Gasco Cristian Gragnaniello

Thieme

Second Edition