

#### Utilizing the ACS NSQIP Database to Develop a Novel Artificial Intelligence Model for Prediction of Reoperation Following Surgical Site Infection for Lumbar Spine Surgeries

Jaskeerat Gujral, MSE, FICS (Jr.)

July 10, 2025

#### Disclosures

No Disclosures

#### **Surgical Site Infections**

Pose a morbidity burden, prolonging hospitalization, increasing healthcare costs, and necessitating unplanned re-operations Lumbar microdiscectomy carries a comparatively lower risk than instrumented spinal fusions

Although re-operation following SSI is a rare event, its consequences are profound Postoperative SSI remains a clinically significant concern due to its potential to necessitate early re-operation

#### What is the Need?

There are challenges in predicting rare events, but developing models that accurately differentiate patients at elevated versus lower risk would be crucial for advancing precision medicine in neurosurgery

#### Past Literature

Key predictors reported: diabetes, obesity, prolonged operative time, smoking, and revision surgery

Concerns with Models have variable predictive performance, with AUROC values (0.76 to 0.99); concerns about generalizability across patient populations.

Random forests and gradient boosting can leverage complex interactions between patientspecific and procedural factors

Few studies have targeted the prediction of reoperation following SSI in lumbar microdiscectomy

## Goal

Development and validation of an ML-based predictive model for 30day re-operation following SSI in lumbar microdiscectomy patients. Refine risk stratification in neurosurgery and contribute to the broader discourse on rare event prediction.

#### Variables

| Demographics                                                         | Lifestyle-                                                            | Pre-Operative                                                                                                                     | Pre-Existing Co-                                                                                                                                                                                  | Surgery-                                                                                                                                                     | Post-Operative                                                                                                                                                                        |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                      | Related Factors                                                       | Lab Values                                                                                                                        | morbidities                                                                                                                                                                                       | Related Factors                                                                                                                                              | Complications                                                                                                                                                                         |
| <ul> <li>Age</li> <li>Sex</li> <li>Hispanic<br/>Ethnicity</li> </ul> | <ul> <li>BMI</li> <li>Smoking<br/>status</li> <li>Diabetes</li> </ul> | <ul> <li>WBC</li> <li>HCT</li> <li>Platelets</li> <li>PTT</li> <li>INR</li> <li>BUN</li> <li>Creatine</li> <li>Albumin</li> </ul> | <ul> <li>CHF</li> <li>Disseminated cancer</li> <li>Steroid use</li> <li>Bleeding disorder</li> <li>COPD</li> <li>Dialysis</li> <li>Weight loss</li> <li>Renal failure</li> <li>Dyspnea</li> </ul> | <ul> <li>Operative times</li> <li>Transfer from home status</li> <li>Functional status</li> <li>ASA score</li> <li>Transfusion</li> <li>Specialty</li> </ul> | <ul> <li>Superficial SSI</li> <li>Deep<br/>incisional SSI</li> <li>Organ/Space<br/>SSI</li> <li>Re-admission</li> <li>Post-<br/>operative re-<br/>operatoin<br/>due to SSI</li> </ul> |



## Reporting

- Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)
- Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis + Artificial Intelligence (TRIPOD+AI) guidelines



## Why Utilize the ACS-NSQIP Database?

- Provides multi-institutional data, which is beneficial for large sample size and increasing generalizability

-Has been validated and shown to have reliable and robust data (Shiloach et al. 2010)



## Variables

| Demographics                                                         | Lifestyle-                                                            | Pre-Operative                                                                                                                     | Pre-Existing Co-                                                                                                                                                                                  | Surgery-Related                                                                                                                                              |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                      | Related Factors                                                       | Lab Values                                                                                                                        | morbidities                                                                                                                                                                                       | Factors                                                                                                                                                      |
| <ul> <li>Age</li> <li>Sex</li> <li>Hispanic<br/>Ethnicity</li> </ul> | <ul> <li>BMI</li> <li>Smoking<br/>status</li> <li>Diabetes</li> </ul> | <ul> <li>WBC</li> <li>HCT</li> <li>Platelets</li> <li>PTT</li> <li>INR</li> <li>BUN</li> <li>Creatine</li> <li>Albumin</li> </ul> | <ul> <li>CHF</li> <li>Disseminated cancer</li> <li>Steroid use</li> <li>Bleeding disorder</li> <li>COPD</li> <li>Dialysis</li> <li>Weight loss</li> <li>Renal failure</li> <li>Dyspnea</li> </ul> | <ul> <li>Operative times</li> <li>Transfer from home status</li> <li>Functional status</li> <li>ASA score</li> <li>Transfusion</li> <li>Specialty</li> </ul> |



#### Outcomes

Primary outcome: development and validation of a machine learning algorithm to predict early post-operative re-operation following a postoperative SSI.

Secondary outcomes: interpretability analysis using SHapley Additive Explanations





Prevalence of missing data constituted **<u>under 5% of the final dataset</u>**. Missing values were imputed with multiple imputations using chained equations with 5 imputations.



### **Statistical Analysis**

| Baseline<br>Characteristics  | • Summarized using descriptive statistics                                                                                                                                 |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Machine<br>Learning Pipeline | <ul> <li>Nested Cross-Validation</li> <li>Bayesian Optimization</li> <li>XGBoost + SMOTE for class imbalance</li> </ul>                                                   |  |  |
| Model<br>Performance         | <ul> <li>Accuracy, Sensitivity (recall), Specificity, PPV, NPV, F1-score,<br/>Brier score, AUROC, AU-PRC, and MCC</li> <li>95% CI Bootstrapping 10,000 samples</li> </ul> |  |  |
| Model<br>Interpretability    | • SHAP Analysis                                                                                                                                                           |  |  |

#### **Table 1. Baseline Characteristics**

| Variable                            | Total (N=79870) | Control (N=79408) | REOP After SSI (N=462) | P-Value |
|-------------------------------------|-----------------|-------------------|------------------------|---------|
| Age (years)                         | $51.4\pm15.8$   | $51.4 \pm 15.8$   | $51.8\pm15.6$          | 0.636   |
| Gender                              |                 |                   |                        |         |
| Female                              | 35023 (43.9)    | 34797 (43.8)      | 226 (48.9)             | 0.031   |
| Male                                | 44846 (56.1)    | 44610 (56.2)      | 236 (51.1)             | 0.031   |
| Race                                |                 |                   |                        |         |
| White                               | 61703 (77.3)    | 61355 (77.3)      | 348 (75.3)             | 0.349   |
| Black or African American           | 5245 (6.6)      | 5208 (6.6)        | 37 (8.0)               | 0.246   |
| Asian                               | 2041 (2.6)      | 2035 (2.6)        | 6 (1.3)                | 0.117   |
| American Indian or Alaska Native    | 446 (0.6)       | 439 (0.6)         | 7 (1.5)                | 0.016   |
| Native Hawaiian or Pacific Islander | 252 (0.3)       | 251 (0.3)         | 1 (0.2)                | 0.999   |
| Other                               | 11 (0.0)        | 11 (0.0)          |                        | 0.999   |
| Hispanic ethnicity                  | 5199 (6.5)      | 5176 (6.5)        | 23 (5.0)               | 0.214   |
| Smoker                              | 17233 (21.6)    | 17095 (21.5)      | 138 (29.9)             | < 0.001 |
| ASA score                           |                 |                   |                        |         |
| 1                                   | 8033 (10.1)     | 8008 (10.1)       | 25 (5.4)               | 0.001   |
| 2                                   | 45714 (57.2)    | 45492 (57.3)      | 222 (48.1)             | < 0.001 |
| 3                                   | 24924 (31.2)    | 24730 (31.1)      | 194 (42.0)             | < 0.001 |
| 4                                   | 1114 (1.4)      | 1094 (1.4)        | 20 (4.3)               | < 0.001 |
| 5                                   | 4 (0.0)         | 4 (0.0)           |                        | 0.999   |
| RAI-rev score                       | $15.7\pm6.8$    | $15.7\pm6.8$      | $16.1 \pm 7.2$         | 0.206   |
| Functional status                   |                 |                   |                        |         |
| Independent                         | 78587 (98.4)    | 78144 (98.4)      | 443 (95.9)             | < 0.001 |
| Partially Dependent                 | 849 (1.1)       | 840 (1.1)         | 9 (1.9)                | 0.068   |
| Totally Dependent                   | 57 (0.1)        | 53 (0.1)          | 4 (0.9)                | < 0.001 |
| History                             |                 |                   |                        |         |
| CHF                                 | 148 (0.2)       | 148 (0.2)         |                        | 0.999   |
| COPD                                | 1950 (2.4)      | 1927 (2.4)        | 23 (5.0)               | 0.001   |
| Medication-requiring hypertension   | 30458 (38.1)    | 30236 (38.1)      | 222 (48.1)             | < 0.001 |

#### **Table 1. Baseline Characteristics**

| Variable                            | Total (N=79870) | Control (N=79408) | REOP After SSI (N=462) | P-Value |
|-------------------------------------|-----------------|-------------------|------------------------|---------|
| Age (years)                         | $51.4\pm15.8$   | $51.4 \pm 15.8$   | $51.8\pm15.6$          | 0.636   |
| Gender                              |                 |                   |                        |         |
| Female                              | 35023 (43.9)    | 34797 (43.8)      | 226 (48.9)             | 0.031   |
| Male                                | 44846 (56.1)    | 44610 (56.2)      | 236 (51.1)             | 0.031   |
| Race                                |                 |                   |                        |         |
| White                               | 61703 (77.3)    | 61355 (77.3)      | 348 (75.3)             | 0.349   |
| Black or African American           | 5245 (6.6)      | 5208 (6.6)        | 37 (8.0)               | 0.246   |
| Asian                               | 2041 (2.6)      | 2035 (2.6)        | 6 (1.3)                | 0.117   |
| American Indian or Alaska Native    | 446 (0.6)       | 439 (0.6)         | 7 (1.5)                | 0.016   |
| Native Hawaiian or Pacific Islander | 252 (0.3)       | 251 (0.3)         | 1 (0.2)                | 0.999   |
| Other                               | 11 (0.0)        | 11 (0.0)          |                        | 0.999   |
| Hispanic ethnicity                  | 5199 (6.5)      | 5176 (6.5)        | 23 (5.0)               | 0.214   |
| Smoker                              | 17233 (21.6)    | 17095 (21.5)      | 138 (29.9)             | < 0.001 |
| ASA score                           |                 |                   |                        |         |
| 1                                   | 8033 (10.1)     | 8008 (10.1)       | 25 (5.4)               | 0.001   |
| 2                                   | 45714 (57.2)    | 45492 (57.3)      | 222 (48.1)             | < 0.001 |
| 3                                   | 24924 (31.2)    | 24730 (31.1)      | 194 (42.0)             | < 0.001 |
| 4                                   | 1114 (1.4)      | 1094 (1.4)        | 20 (4.3)               | < 0.001 |
| 5                                   | 4 (0.0)         | 4 (0.0)           |                        | 0.999   |
| RAI-rev score                       | $15.7 \pm 6.8$  | $15.7 \pm 6.8$    | $16.1 \pm 7.2$         | 0.206   |
| Functional status                   |                 |                   |                        |         |
| Independent                         | 78587 (98.4)    | 78144 (98.4)      | 443 (95.9)             | < 0.001 |
| Partially Dependent                 | 849 (1.1)       | 840 (1.1)         | 9 (1.9)                | 0.068   |
| Totally Dependent                   | 57 (0.1)        | 53 (0.1)          | 4 (0.9)                | < 0.001 |
| History                             |                 |                   |                        |         |
| CHF                                 | 148 (0.2)       | 148 (0.2)         |                        | 0.999   |
| COPD                                | 1950 (2.4)      | 1927 (2.4)        | 23 (5.0)               | 0.001   |
| Medication-requiring hypertension   | 30458 (38.1)    | 30236 (38.1)      | 222 (48.1)             | < 0.001 |

#### **Table 1. Baseline Characteristics**

| Steroid use                | 2808 (3.5)       | 2778 (3.5)       | 30 (6.5)        | 0.001   |
|----------------------------|------------------|------------------|-----------------|---------|
| Bleeding disorder          | 803 (1.0)        | 790 (1.0)        | 13 (2.8)        | 0.001   |
| Diabetes insulin-dependent | 3572 (4.5)       | 3533 (4.4)       | 39 (8.4)        | < 0.001 |
| Diabetes non-insulin       | 7449 (9.3)       | 7376 (9.3)       | 73 (15.8)       | < 0.001 |
| No diabetes                | 68849 (86.2)     | 68499 (86.3)     | 350 (75.8)      | < 0.001 |
| Dialysis                   | 121 (0.2)        | 118 (0.1)        | 3 (0.6)         | 0.034   |
| Disseminated cancer        | 153 (0.2)        | 150 (0.2)        | 3 (0.6)         | 0.060   |
| Ascites                    | 8 (0.0)          | 7 (0.0)          | 1 (0.2)         | 0.045   |
| Pre-operative labs         |                  |                  |                 |         |
| Albumin (g/dL)             | $4.2 \pm 0.5$    | $4.2 \pm 0.5$    | $4.0\pm0.6$     | < 0.001 |
| Alkaline phosphatase (U/L) | $72.8\pm27.8$    | $72.8\pm27.8$    | $79.5\pm32.0$   | 0.003   |
| Bilirubin (mg/dL)          | $0.6 \pm 0.4$    | $0.6 \pm 0.4$    | $0.5\pm0.3$     | 0.151   |
| BUN (mg/dL)                | $16.1 \pm 6.6$   | $16.1 \pm 6.6$   | $16.7 \pm 7.8$  | 0.162   |
| Creatinine (mg/dL)         | $0.9 \pm 0.4$    | $0.9 \pm 0.4$    | $0.9 \pm 0.6$   | 0.474   |
| HCT (%)                    | $42.0\pm4.3$     | $42.0 \pm 4.3$   | $41.4 \pm 5.2$  | 0.012   |
| INR                        | $1.0 \pm 0.2$    | $1.0 \pm 0.2$    | $1.0 \pm 0.1$   | 0.853   |
| Platelets $(10^3/\mu L)$   | $251.0 \pm 67.5$ | $251.0 \pm 67.5$ | $255.5\pm79.2$  | 0.247   |
| PTT (seconds)              | $28.9\pm4.3$     | $28.9\pm4.3$     | $29.7\pm4.5$    | 0.011   |
| SGOT (U/L)                 | $25.2 \pm 19.8$  | $25.2\pm19.8$    | $24.7\pm14.4$   | 0.608   |
| Sodium (mmol/L)            | $139.3 \pm 5.7$  | $139.4 \pm 5.7$  | $139.0 \pm 3.3$ | 0.022   |
| WBC ( $10^{3}/\mu L$ )     | $7.8 \pm 2.7$    | $7.8 \pm 2.7$    | $8.3\pm3.2$     | < 0.001 |
| Operative time             | $92.1 \pm 54.9$  | $91.9\pm54.7$    | $120.4\pm79.6$  | < 0.001 |

ASA: American Society of Anesthesiologists, BUN: Blood urea nitrogen, CHF: Congestive heart failure, COPD: Chronic obstructive pulmonary disease, HCT: Hematocrit, INR: International normalized ratio, PTT: Partial thromboplastin time, RAI-Rev: Revised Risk Analysis Index, SGOT: Serum glutamic-oxaloacetic transaminase, SSI: Surgical site infection, WBC: White blood cell count.

## Table 2. Post-operative Complications andOutcomes

| Variable                             | Total<br>(N=79870) | Control (N=79408) | REOP After SSI (N=462) | P-Value |
|--------------------------------------|--------------------|-------------------|------------------------|---------|
| Any post-operative SSI               | 1059 (1.3)         | 597 (0.8)         | 462 (100.0)            | < 0.001 |
| Post-operative superficial infection | 607 (0.8)          | 473 (0.6)         | 134 (29.0)             | < 0.001 |
| Post-operative deep incisional SSI   | 255 (0.3)          | 58 (0.1)          | 197 (42.6)             | < 0.001 |
| Post-operative organ/space SSI       | 208 (0.3)          | 71 (0.1)          | 137 (29.7)             | < 0.001 |
| Any re-admission                     | 2613 (3.3)         | 2197 (2.8)        | 416 (90.0)             | < 0.001 |
| Suspected reason<br>superficial SSI  | 153 (0.2)          | 60 (0.1)          | 93 (20.1)              | <0.001  |
| Suspected reason deep incisional SSI | 169 (0.2)          | 38 (0.0)          | 131 (28.4)             | < 0.001 |
| Suspected reason<br>organ/space SSI  | 103 (0.1)          | 24 (0.0)          | 79 (17.1)              | < 0.001 |
| Suspected reason SSI                 | 425 (0.5)          | 122 (0.2)         | 303 (65.6)             | < 0.001 |
| Post-operative re-operation          | 1735 (2.2)         | 1273 (1.6)        | 462 (100.0)            | < 0.001 |
| After post-operative SSI             | 462 (0.6)          | -                 | 462 (100.0)            | < 0.001 |

SSI: Surgical site infection, REOP: Reoperation.

# Table 3. Performance metrics of the nested cross-validated, feature-engineered, and Bayesian-optimized model evaluated at different classification thresholds, including default, Youden's Index, F1-optimized, and MCC-optimized, with 95% confidence intervals derived from 10,000 bootstrapped resamples

| Metric      | Default (0.5)          | Youden's Index (0.148) | F1-optimized (0.388)   | MCC-optimized (0.278)  |
|-------------|------------------------|------------------------|------------------------|------------------------|
| Accuracy    | 0.993 (0.992 to 0.993) |
| Sensitivity | 0.924 (0.815 to 0.989) | 0.965 (0.931 to 0.996) | 0.948 (0.905 to 0.983) | 0.985 (0.959 to 1.000) |
| Specificity | 0.993 (0.993 to 0.994) | 0.993 (0.993 to 0.993) | 0.993 (0.993 to 0.993) | 0.993 (0.992 to 0.993) |
| PPV         | 0.437 (0.431 to 0.455) | 0.436 (0.428 to 0.443) | 0.437 (0.429 to 0.445) | 0.437 (0.429 to 0.446) |
| NPW         | 1.000 (0.999 to 1.000) | 1.000 (1.000 to 1.000) | 1.000 (0.999 to 1.000) | 1.000 (1.000 to 1.000) |
| F1-score    | 0.593 (0.564 to 0.619) | 0.600 (0.588 to 0.612) | 0.598 (0.583 to 0.611) | 0.605 (0.596 to 0.615) |
| Brier score | 0.006 (0.006 to 0.007) |
| AUCROC      | 0.996 (0.996 to 0.996) |
| AU-PRC      | 0.426 (0.385 to 0.471) | 0.426 (0.402 to 0.452) | 0.426 (0.402 to 0.451) | 0.426 (0.402 to 0.452) |
| MCC         | 0.632 (0.590 to 0.661) | 0.646 (0.630 to 0.660) | 0.641 (0.622 to 0.657) | 0.654 (0.643 to 0.664) |

AUCROC: Area under the receiver operating characteristic curve, AU-PRC: Area under the precision-recall curve, MCC: Matthews correlation coefficient, NPV: Negative predictive value, PPV: Positive predictive value.

### **Figure 1. STROBE Checklist**



Figure 2. Area under the receiver operating characteristic curve (AUC-ROC; A), area under the precision-recall curve (AUPRC; B), and calibration plot (C) for the final model with 95% confidence intervals from 10,000 bootstrapped resamples



#### Figure 3. Summary SHAP plot (A) and mean absolute SHAP value plot (B) showing the impact and relative importance of the selected feature-engineered predictors in the Bayesian-optimized model.



#### Conclusion

Optimized machine learning approach accurately predicted the rare event of early post-operative reoperation following SSI in lumbar microdiscectomy

Findings underscore the feasibility of data-driven risk stratification to improve outcomes and guide surgical strategies in spine care

External validation and prospective assessment are needed to increase generalizability and further refine individualized surgical decision-making

## Limitations

Retrospective Design

Lack the spine-specific granular details required for accurate rare-event modeling.

Data imputation and synthetic sample generation may introduce biases if the original data distribution was not fully captured

External validation across diverse healthcare settings is necessary for increased generalizability

A prospective assessment would offer a more definitive measure of real-world impact

#### Acknowledgments

- -William C. Welch, MD
- -Mert Marcel Dagli, MD
- -Penn Neurosurgery

